The diurnal behavior of evaporative fraction in the soil-vegetation-atmospheric boundary layer continuum

نویسندگان

  • P. Gentine
  • D. Entekhabi
  • Jan Polcher
  • PIERRE GENTINE
  • DARA ENTEKHABI
  • JAN POLCHER
چکیده

The components of the land surface energy balance respond to periodic incoming radiation forcing with different amplitude and phase characteristics. Evaporative fraction (EF), the ratio of latent heat to available energy at the land surface, supposedly isolates surface control (soil moisture and vegetation) from radiation and turbulent factors. EF is thus supposed to be a diagnostic of the surface energy balance that is constant or self-preserved during daytime. If this holds, EF can be an effective way to estimate surface characteristics from temperature and energy flux measurements. Evidence for EF diurnal self-preservation is based on limited-duration field measurements. The daytime EF self-preservation using both long-term measurements and a model of the soil–vegetation–atmosphere continuum is reexamined here. It is demonstrated that EF is rarely constant and that its temporal power spectrum is wide; thus emphasizing the role of all diurnal frequencies associated with reduced predictability in its daylight response. Oppositely, surface turbulent heat fluxes are characterized by a strong response to the principal daily frequencies (daily and semi-daily) of the solar radiative forcing. It is shown that the phase lag and bias between the turbulent flux components of the surface energy balance are key to the shape of the daytime EF. Therefore, an understanding of the physical factors that affect the phase lag and bias in the response of the components of the surface energy balance to periodic radiative forcing is needed. A linearized model of the soil–vegetation–atmosphere continuum is used that can be solved in terms of harmonics to explore the physical factors that determine the phase characteristics. The dependency of these phase and offsets on environmental parameters—friction velocity, water availability, solar radiation intensity, relative humidity, and boundary layer entrainment—is then analyzed using the model that solves the dynamics of subsurface and atmospheric boundary layer temperatures and heat fluxes in a continuum. Additionally, the asymptotical diurnal lower limit of EF is derived as a function of these surface parameters and shown to be an important indicator of the self-preservation value when the conditions (also identified) for such behavior are present.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying the coupling degree between land surface and the atmospheric boundary layer with the coupled vegetation-atmosphere model HIRVAC

In the present study, the ability of different indices to quantify the coupling degree between a vegetated surface and the atmospheric boundary layer is tested. For this purpose, a one-and-a-half dimensional atmospheric boundary layer model, including a high resolved vegetation canopy, was applied (HIRVAC) and indices, such as the decoupling factor , as well as other measures derived from mode...

متن کامل

Two perspectives on the coupled carbon, water and energy exchange in the planetary boundary layer

Understanding the interactions between the land surface and the atmosphere is key to modelling boundarylayer meteorology and cloud formation, as well as carbon cycling and crop yield. In this study we explore these interactions in the exchange of water, heat and CO2 in a cropland– atmosphere system at the diurnal and local scale. To that end, we couple an atmospheric mixed-layer model (MXL) to ...

متن کامل

Impact of Land Surface Heterogeneity on Mesoscale Atmospheric Dispersion

Prior numerical modelling studies show that atmospheric dispersion is sensitive to surface heterogeneities, but past studies do not consider the impact of a realistic distribution of surface heterogeneities on mesoscale atmospheric dispersion. While these focussed on dispersion in the convective boundary layer, the present work also considers dispersion in the nocturnal boundary layer and above...

متن کامل

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

A Continuum Shell-beam Finite Element Modeling of Buried Pipes with 90-degree Elbow Subjected to Earthquake Excitations

  In the current work, the seismic analysis of bent region in buried pipes is performed, and effects of soil properties and modeling methods on pipe’s response are investigated. To do this task Beam, Beam-Shell Finite Element modeling and a Continuum shell FE models of a 90 degrees elbow are employed. In the Beam model, the pipe is simulated by beam elements while combined shell-beam elements a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011